Convergence Comparison of Several Iteration Algorithms for the Common Fixed Point Problems
نویسندگان
چکیده
We discuss the following viscosity approximations with the weak contraction A for a nonexpansive mapping sequence {Tn}, yn αnAyn 1 − αn Tnyn, xn 1 αnAxn 1 − αn Tnxn. We prove that Browder’s and Halpern’s type convergence theorems imply Moudafi’s viscosity approximations with the weak contraction, and give the estimate of convergence rate between Halpern’s type iteration and Mouda’s viscosity approximations with the weak contraction.
منابع مشابه
On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کاملConvergence theorems of an implicit iteration process for asymptotically pseudocontractive mappings
The purpose of this paper is to study the strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of asymptotically pseudocontractive mappings and nonexpansive mappings in normed linear spaces. The results in this paper improve and extend the corresponding results of Xu and Ori, Zhou and Chang, Sun, Yang and Yu in some aspects.
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملNew three-step iteration process and fixed point approximation in Banach spaces
In this paper we propose a new iteration process, called the $K^{ast }$ iteration process, for approximation of fixed points. We show that our iteration process is faster than the existing well-known iteration processes using numerical examples. Stability of the $K^{ast}$ iteration process is also discussed. Finally we prove some weak and strong convergence theorems for Suzuki ge...
متن کاملNew hybrid method for equilibrium problems and relatively nonexpansive mappings in Banach spaces
In this paper, applying hybrid projection method, a new modified Ishikawa iteration scheme is presented for finding a common element of the solution set of an equilibrium problem and the set of fixed points of relatively nonexpansive mappings in Banach spaces. A numerical example is given and the numerical behaviour of the sequences generated by this algorithm is compared with several existence...
متن کامل